
Let humanity enter the safe blockchain world.

1



Let humanity enter the safe blockchain world.

Version description

2

The revision Date Revised Version
Write


documentation 20220516 KNOWNSEC Blockchain Lab V1.0

Document information
Title Version Document Number Type

OOE Smart Contract


Audit Report V1.0
96c7d024af264ddea4dc547b2a

0

520bb

Open to


project team

Statement

KNOWNSEC Blockchain Lab only issues this report for facts that have occurred  

or existed before the issuance of this report, and assumes corresponding responsibilities  

for this. KNOWNSEC Blockchain Lab is unable to determine the security status of its  

smart contracts and is not responsible for the facts that will occur or exist in the future.  

The security audit analysis and other content made in this report are only based on the  

documents and information provided to us by the information provider as of the time  

this report is issued. KNOWNSEC Blockchain Lab 's assumption: There is no missing,  

tampered, deleted or concealed information. If the information provided is missing,  

tampered with, deleted, concealed or reflected in the actual situation, KNOWNSEC  

Blockchain Lab shall not be liable for any losses and adverse effects caused thereby.



Let humanity enter the safe blockchain world.

Directory

1.	 Summarize ........................................................................................................ - 5 -


2.	 Item information .............................................................................................. - 6 -


Item description .............................................................................................. - 6 -


The project's website ...................................................................................... - 6 -


White Paper .................................................................................................... - 7 -


Review version code ...................................................................................... - 7 -


Contract file and Hash/contract deployment address ..................................... - 7 -


3.	 External visibility analysis............................................................................... - 9 -


LimitOrderProtocol contracts ......................................................................... - 9 -


OrderMixin contracts ................................................................................... - 10 -


OrderRFQMixin contracts............................................................................ - 10 -


WethUnwrapper contracts ............................................................................ - 11 -


4.	 Code vulnerability analysis ........................................................................... - 12 -


Summary description of the audit results ..................................................... - 12 -


5.	 Business security detection ............................................................................ - 15 -

OrderMixin.sol contract fills in order related functions【Pass】................ - 15 -  

LimitOrderProtocol.sol contract swap related functions【Pass】............... - 20 -


6.	 Code basic vulnerability detection................................................................ - 22 -


Compiler version security【Pass】 ............................................................. - 22 -


Redundant code【Pass】 ............................................................................. - 22 -


Use of safe arithmetic library【Pass】 ........................................................ - 22 -
3



Let humanity enter the safe blockchain world.


Not recommended encoding【Pass】.......................................................... - 23 -


Reasonable use of require/assert【Pass】 ................................................... - 23 -


Fallback function safety【Pass】 ................................................................ - 23 -


tx.origin authentication【Pass】.................................................................. - 24 -


Owner permission control【Pass】 ............................................................. - 24 -


Gas consumption detection【Pass】 ........................................................... - 24 -


call injection attack【Pass】 .................................................................... - 25 -


Low-level function safety【Pass】 .......................................................... - 25 -


Vulnerability of additional token issuance【Pass】................................. - 25 -  

Access control defect detection【Pass】 ................................................. - 26 -


Numerical overflow detection【Pass】 ................................................... - 26 -


Arithmetic accuracy error【Pass】 .......................................................... - 27 -


Incorrect use of random numbers【Pass】 .............................................. - 27 -


Unsafe interface usage【Pass】 ............................................................... - 28 -


Variable coverage【Pass】....................................................................... - 28 -


Uninitialized storage pointer【Pass】...................................................... - 28 -


Return value call verification【Pass】..................................................... - 29 -


Transaction order dependency【Pass】 ................................................... - 30 -


Timestamp dependency attack【Pass】 ................................................... - 30 -


Denial of service attack【Pass】.............................................................. - 31 -


Fake recharge vulnerability【Pass】 ....................................................... - 31 -


Reentry attack detection【Pass】............................................................. - 32 -

4



Let humanity enter the safe blockchain world.


Replay attack detection【Pass】 .............................................................. - 32 -


Rearrangement attack detection【Pass】................................................. - 32 -


7.	 Appendix A: Security Assessment of Contract Fund Management .......... - 34 -

5

 1. Summarize	 

The effective test period of this report is from May 12, 2022 to May 16, 2022.  

During this period, the security and standardization of OOE smart contracts will be  

audited and used as the statistical basis for the report.


The scope of this smart contract security audit does not include external contract  

calls, new attack methods that may appear in the future, and code after contract  

upgrades or tampering. (With the development of the project, the smart contract may  

add a new pool , New functional modules, new external contract calls, etc.), does not  

include front-end security and server security.


In this audit report, engineers conducted a comprehensive analysis of the common  

vulnerabilities of smart contracts (Chapter 6). The smart contract code of the OOE  

is comprehensively assessed as PASS.


Since the testing is under non-production environment, all codes are the latest  

version. In addition, the testing process is communicated with the relevant engineer,  

and testing operations are carried out under the controllable operational risk to avoid  

production during the testing process, such as: Operational risk, code security risk.

KNOWNSEC Attest information:
classification information

report number 96c7d024af264ddea4dc547b2a0520bb

report query link
https://attest.im/attestation/searchResult?

qurey=96c7d0

24af264ddea4dc547b2a0520bb



Let humanity enter the safe blockchain world.

 2. Item information	 

Item description


OOE is the world's first complete aggregation protocol for crypto  
trading, which captures liquidity from DeFi and CeFi markets and enables  
cross-chain exchange. Our smart routing algorithm finds the best prices  
from DEXs and CEXes and splits routes to give traders the best prices with  
low slippage and fast settlement. The product is free to use; OpenOcean  
users only pay the regular blockchain gas and exchange transaction fees,  
which are charged by the exchange, not OpenOcean.


OpenOcean aggregates major exchanges (DEXes and CEXes) and the  
entire Ethereum, Ethereum Layer 2 like Loopping and Polygon, Binance  
Smart Chain, Solana, HECO, Ontology, TRON, and is Binance Smart  
Chain, TRON, Ethereum Layer 2 and the first full aggregator for the

Binance exchange. We continue to aggregate public chains and exchanges  
according to the needs of the community.


In addition to pooled swaps, OpenOcean will continue to integrate  
derivatives, income, lending and insurance products, and launch its own  
portfolio margin products and smart wealth management services.  
OpenOcean provides users with APIs and arbitrage tools to operate  
automated arbitrage strategies.


The vision is to build a complete aggregator for crypto trading to

improve capital efficiency and connect siloed islands in the currently  
fragmented DeFi and CeFi markets. Whether it is a small individual  
investor or a large institution, everyone should have the opportunity to  
trade at the best prices and apply their own investment strategies to various  
crypto asset classes.


OpenOcean has its own token, OOE, as a utility and governance token.


The project's website


htps://openocean.finance

6



Let humanity enter the safe blockchain world.

White Paper


https://docs.openocean.finance/


Review version code


https://bscscan.com/address/0xA8A0213bb2ce671E457Ec14D08  
EB9d40E6DA8e2d#code


https://bscscan.com/address/0x63c85eb44932d3b99E3975F460  
1c330FBD26fcD8#code


Contract file and Hash/contract deployment address

7

The contract


documents MD5

AggregatorMock.sol
48b1abac4c151d4c27ebf49e4d44948c

ArgumentsDecoderTest.

sol
d32d85c1d92dd0b9623b922d105c7325

LimitOrderProtocol.so

l
d32d2baf592a6bbe25b303ecfa603b59

Permitable.sol
0eb1adec1d05b9a93fd834741ae1be6b

ArgumentsDecoder.sol
f188c1809bda586011b3371017aa790d

RevertReasonParser.s
o

l

cdfbe9a2f196d386386b5629a3dc3420

UniversalERC20.sol
032f16f3ed09abbb30cca6f1e941212a

OrderMixin.sol
5bf70d24eb02375a33011e4aba6acb07

OrderRFQMixin.sol
e4bc33da204905be7e7fbbaf4ff7d044



Let humanity enter the safe blockchain world.

WethUnwrapper.sol
42d04a552d5d386f240b0d738db23fe2

PredicateHelper.sol
33e889f3f82f9d973356a32e4c5ac7c2

ChainlinkCalculator.s

ol
715da0e0767a8b0c37c43327f2284b62

AmountCalculator.sol
ef981c903622e6c4679cc5289c53932a

ERC721Proxy.sol
9fd6c5b7e9eb6c9a10e51e047fc92246

ImmutableOwner.sol
eb9118aa5d9bd7c99c21e7c9993e4b94

ERC721ProxySafe.so
l

cc17bdd50cd30eef3c23c136f3680003

NonceManager.sol
f4c1a5ba0f05f759602bd6b1e3b61359

ERC1155Proxy.sol
e3b4e7ba3916797e43a34dc7b2c893ca

IWithdrawable.sol
61de4986ad406f6ef573a7d89ad50bbd

IDaiLikePermit.sol
0517e16f4028b7275763ce9e9488006e

InteractiveNotificati

onReceiver.sol
03e46d862b8faa03d8cd3b3c0a975177

8



Let humanity enter the safe blockchain world.

 3. External visibility analysis	 

LimitOrderProtocol contracts

9

LimitOrderProtocol

funcName visibility state changes decorator
payable


reception instructions

setFeeBuyToken


Keep
Public True onlyOwner --- ---

setIsNoProtect external True onlyOwner --- ---

balanceOfPair Public False --- --- ---

addNoBurnAddre


ss
Public True onlyOwner --- ---

setDuration external True onlyOwner --- ---

removeNoBurnA


ddress
Public True onlyOwner --- ---

isContract Public False --- --- ---

isContractSender Public False --- --- ---

referParent Public True --- --- ---

getParent Public False --- --- ---

isInNoBurnAddre


ss
Public False --- --- ---

setStart external True onlyOwner --- ---

setAddLpAddr external True onlyOwner --- ---

checkBuyAmount internal True --- --- ---

_transfer internal True --- --- ---

recover external False onlyOwner --- ---



Let humanity enter the safe blockchain world.

OrderMixin contracts

OrderMixin

funcName visibility state changes decorator
payable


reception instructions

updateOperator public True onlyOwner --- ---

getOOswap public False --- --- ---

setOOswap public True onlyOwner --- ---

remaining external False --- --- ---

remainingRaw external False --- --- ---

remainingsRaw external False --- --- ---

simulateCalls external True --- --- ---

cancelOrder external True --- --- ---

fillOrder external True --- --- ---

hashUnmuteMsg public False --- --- ---

fillOrderTo public True --- --- ---

checkPredicate public False --- --- ---

hashOrder public False --- --- ---

_makeCall private True --- --- ---

_callGetter private False --- --- ---

OrderRFQMixin contracts

10

OrderRFQMixin

funcName visibility state changes decorator
payable


reception instructions



Let humanity enter the safe blockchain world.

invalidatorForOr


derRFQ
external False --- --- ---

cancelOrderRFQ external True --- --- ---

fillOrderRFQ external True --- --- ---

fillOrderRFQTo public True --- --- ---

_invalidateOrder private True --- --- ---

WethUnwrapper contracts

WethUnwrapper

funcName visibility state changes decorator
payable


reception instructions

notifyFillOrder external True --- --- ---

11



Let humanity enter the safe blockchain world.

 4. Code vulnerability analysis	 

Summary description of the audit results

Audit results

audit


project audit content condition description

Busines

s  

security  

detectio

n

OrderMixin.sol

contract fills in order  

related functions Pass After testing, there is no security issue.

LimitOrderProtocol.

sol contract swap  

related functions Pass After testing, there is no security issue.

Compiler version


security Pass After testing, there is no security issue.

Redundant code Pass After testing, there is no security issue.

Use of safe


arithmetic library Pass After testing, there is no security issue.

Not recommended


encoding Pass After testing, there is no security issue.

Code
Reasonable use of

basic

vulnerab

i  lity

Pass After testing, there is no security issue.
require/assert

fallback function
Pass After testing, there is no security issue.

safety
detection

tx.origin


authentication Pass After testing, there is no security issue.

Owner permission


control Pass After testing, there is no security issue.

Gas consumption


detection Pass After testing, there is no security issue.

call injection attack Pass After testing, there is no security issue.

12



Let humanity enter the safe blockchain world.

Low-level function


safety Pass After testing, there is no security issue.

Vulnerability of

additional token  

issuance Pass After testing, there is no security issue.

Access control


defect detection Pass After testing, there is no security issue.

Numerical overflow


detection Pass After testing, there is no security issue.

Arithmetic accuracy


error Pass After testing, there is no security issue.

Wrong use of

random number  

detection Pass After testing, there is no security issue.

Unsafe interface use Pass After testing, there is no security issue.

Variable coverage Pass After testing, there is no security issue.

Uninitialized storage


pointer Pass After testing, there is no security issue.

Return value call


verification Pass After testing, there is no security issue.

Transaction order


dependenc

y  detection

Pass After testing, there is no security issue.

Timestamp


dependent attack Pass After testing, there is no security issue.

Denial of service


attack detection Pass After testing, there is no security issue.

Fake recharge

vulnerabilit

y  detection Pass After testing, there is no security issue.

Reentry attack


detection Pass After testing, there is no security issue.

13



Let humanity enter the safe blockchain world.

Replay attack


detection Pass After testing, there is no security issue.

Rearrangement


attack detection Pass After testing, there is no security issue.

14



Let humanity enter the safe blockchain world.

 5. Business security detection	 

OrderMixin.sol contract fills in order related functions


【Pass】
Audit analysis: The remaining function of the contract returns an order with an  

unfilled price, and the remainingRaw and remainingsRaw functions are used to return  

the order when the order exists. The function permissions are correct, and no obvious  

security issues were found.


function remaining(bytes32 orderHash) external view returns(uint256) {  uint256 

amount = _remaining[orderHash];//knownsec Order hash  require(amount != 

_ORDER_DOES_NOT_EXIST, "LOP: Unknown order");  unchecked { amount -= 

1; }


return amount;


}


function remainingRaw(bytes32 orderHash) external view returns(uint256) 

{  return _remaining[orderHash];


}


function remainingsRaw(bytes32[] memory orderHashes) external view returns(uint256[] memory)


{

uint256[] memory results = new uint256[](orderHashes.length);  for 

(uint256 i = 0; i < orderHashes.length; i++) {


results[i] = _remaining[orderHashes[i]];//knownsec Get hashes in batches


}


return results;


}


function cancelOrder(Order memory order) external { //knownsec// Cancel order  require(order.maker 

== msg.sender, "LOP: Access denied"); //knownsec// Whether the

15



Let humanity enter the safe blockchain world.

order creator is the caller


bytes32 orderHash = hashOrder(order); //knownsec// Get order hash


uint256 orderRemaining = _remaining[orderHash]; //knownsec// Unfilled price order


found

require(orderRemaining != _ORDER_FILLED, "LOP: already filled");  

emit OrderCanceled(msg.sender, orderHash, orderRemaining);


_remaining[orderHash] = _ORDER_FILLED; //knownsec// Set parameters to cancel an


order


}


function fillOrderTo(


Order memory order, //knownsec// Order quote to fill

bytes calldata signature, //knownsec// Signature ensures quote ownership  

uint256 makingAmount, //knownsec// Make order amount


uint256 takingAmount, //knownsec// Take away the order amount

uint256 thresholdAmount, //knownsec// Specify the maximum allowed takeAmount  

when takingAmount is zero, otherwise specify the minimum allowed makingAmount


address target //knownsec// The address that will receive swap


) public returns(uint256 /* actualMakingAmount */, uint256 /* actualTakingAmount */)


{ //knownsec// Fill Order

require(target != address(0), "LOP: zero target is forbidden"); //knownsec// Swap  

address is not 0


bytes32 orderHash = hashOrder(order); //knownsec// Order hash


{	 // Stack too deep

uint256 remainingMakerAmount = _remaining[orderHash];  

require(remainingMakerAmount != _ORDER_FILLED, "LOP: remaining


amount is 0");

require(order.allowedSender == address(0) || order.allowedSender ==  

msg.sender, "LOP: private order");


if (remainingMakerAmount == _ORDER_DOES_NOT_EXIST) { //knownsec//  If 

the untraded order does not exist

16



Let humanity enter the safe blockchain world.


// First fill: validate order and permit maker asset

(bytes	 memory	 sig,	 bytes


abi.decode(signature,(bytes,bytes));


if (userUnmuteSig.length > 2){

17

memory	 userUnmuteSig)	 =

require(SignatureCheckerUpgradeable.isValidSignatureNow(operator, orderHash, sig), "LOP: bad


signature:operator");


require(SignatureCheckerUpgradeable.isValidSignatureNow(order.maker,  

hashUnmuteMsg().toEthSignedMessageHash(), userUnmuteSig), "LOP: bad signature:user");


} else {


require(SignatureCheckerUpgradeable.isValidSignatureNow(order.maker, orderHash, sig), "LOP:  bad 

signature");


}

remainingMakerAmount = order.makingAmount;  if 

(order.permit.length >= 20) {


// proceed only if permit length is enough to store address

(address	 token,	 bytes	 memory	 permit)	 =  

order.permit.decodeTargetAndCalldata();


_permitMemory(token, permit);


require(_remaining[orderHash] == _ORDER_DOES_NOT_EXIST,


"LOP: reentrancy detected");


}


} else {


unchecked { remainingMakerAmount -= 1; }


}


// Check if order is valid


if (order.predicate.length > 0) {


require(checkPredicate(order), "LOP: predicate returned false");


}



Let humanity enter the safe blockchain world.


// Compute maker and taker assets amount

if ((takingAmount == 0) == (makingAmount == 0)) 

{  revert("LOP: only one amount should be 0");


} else if (takingAmount == 0) { //knownsec// If takingAmount is 0, then  

makingAmount can only be at most remainingMakerAmount


uint256 requestedMakingAmount = makingAmount;  if 

(makingAmount > remainingMakerAmount) {


makingAmount = remainingMakerAmount;


}

takingAmount = _callGetter(order.getTakerAmount, order.makingAmount,  

makingAmount, order.takingAmount);


// check that actual rate is not worse than what was expected


//	 takingAmount	 /	 makingAmount	 <=	 thresholdAmount	 /  

requestedMakingAmount


require(takingAmount * requestedMakingAmount <= thresholdAmount *


makingAmount, "LOP: taking amount too high");


} else {


uint256 requestedTakingAmount = takingAmount;

makingAmount	 =	 _callGetter(order.getMakerAmount,  

order.takingAmount, takingAmount, order.makingAmount);


if (makingAmount > remainingMakerAmount) 

{  makingAmount = remainingMakerAmount;


takingAmount	 =	 _callGetter(order.getTakerAmount,


order.makingAmount, makingAmount, order.takingAmount);


}


// check that actual rate is not worse than what was expected


//	 makingAmount	 /	 takingAmount	 >=	 thresholdAmount	 /


requestedTakingAmount


require(makingAmount * requestedTakingAmount >= thresholdAmount *  

takingAmount, "LOP: making amount too low");


}


require(makingAmount > 0 && takingAmount > 0, "LOP: can't swap 0

18



Let humanity enter the safe blockchain world.

amount");


// Update remaining amount in storage  

unchecked {


remainingMakerAmount = remainingMakerAmount - makingAmount;


_remaining[orderHash] = remainingMakerAmount + 1;


}


emit OrderFilled(msg.sender, orderHash, remainingMakerAmount);


}

// Taker => Maker


_makeCall(


order.takerAsset,  

abi.encodePacked(


IERC20Upgradeable.transferFrom.selector,

uint256(uint160(msg.sender)),  

uint256(uint160(order.receiver	 ==	 address(0)

19

?	 order.maker	 :

order.receiver)),

takingAmount,  

order.takerAssetData


)


);


// Maker can handle funds interactively  if 

(order.interaction.length >= 20) {


// proceed only if interaction length is enough to store address

(address	 interactionTarget,	 bytes	 memory	 interactionData)	 =  

order.interaction.decodeTargetAndCalldata();


InteractiveNotificationReceiver(interactionTarget).notifyFillOrder(

msg.sender,


takingAmount, interactionData


);


}

order.makerAsset,	 order.takerAsset,	 makingAmount,



Let humanity enter the safe blockchain world.

// Maker => Taker


_makeCall(

order.makerAsset,  

abi.encodePacked(


IERC20Upgradeable.transferFrom.selector,  

uint256(uint160(order.maker)),  

uint256(uint160(target)),


makingAmount,


order.makerAssetData //knownsec// Create Order


)


);


return (makingAmount, takingAmount);


}

Security advice: None.


LimitOrderProtocol.sol contract swap related functions


【Pass】
Audit analysis: The swap function of the contract is used to transfer tokens to the  

mining pool. The function permissions are correct, and no obvious security issues were  

found.


function swap(address from, address[] calldata path, uint[] calldata amounts, address fee,  

bytes calldata swapExtraData) public payable onlyOperator {


require(path.length == 2 && amounts.length == 2, "invalid args");  

address ooSwap = getOOswap();//knownsec Get swap pool address  

require(ooSwap != address(0), "ooswap is zero");


Param memory vars;

20



Let humanity enter the safe blockchain world.


vars.isETH = IERC20Upgradeable(path[0]).isETH();  if 

(!vars.isETH) {


IERC20Upgradeable(path[0]).safeTransferFrom(from, address(this), amounts[0]);  

IERC20Upgradeable(path[0]).safeIncreaseAllowance(ooSwap, amounts[0]);


}

(vars.success, vars.result) = ooSwap.call{value : msg.value}(swapExtraData);  

require(vars.success, "swap failed");


if (!vars.isETH) 

{  IERC20Upgradeable(path[0]).safeApprove(ooSwap, 0);


}

uint256 returnAmount = abi.decode(vars.result, (uint256));//knownsec Returns the number of  

tokens


require(returnAmount >= amounts[1], "returnAmount is too low");

IERC20Upgradeable(path[1]).universalTransfer(from, amounts[1]);  

uint delta = returnAmount - amounts[1];//


if (delta > 0) {//knownsec If enough tokens are returned  address 

to = fee == address(0) ? owner() : fee;  

IERC20Upgradeable(path[1]).universalTransfer(to, delta);


}


}


Security advice: None.

21



Let humanity enter the safe blockchain world.

 6. Code basic vulnerability detection	 


Compiler version security【Pass】
Check to see if a secure compiler version is used in the contract code  

implementation.


Detection results: After testing, the compiler version is greater than or equal to


0.6.0 in the smart contract code, and there is no such security problem.


Security advice: None.


Redundant code【Pass】

Check that the contract code implementation contains redundant code.

Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Use of safe arithmetic library【Pass】
Check to see if the SafeMath security abacus library is used in the contract code  

implementation.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.

22



Let humanity enter the safe blockchain world.

Not recommended encoding【Pass】
Check the contract code implementation for officially uns recommended or  

deprecated coding methods.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Reasonable use of require/assert【Pass】
Check the reasonableness of the use of require and assert statements in contract  

code implementations.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Fallback function safety【Pass】
Check that the fallback function is used correctly in the contract code  

implementation.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.

23



Let humanity enter the safe blockchain world.

tx.origin authentication【Pass】
tx.origin is a global variable of Solidity that traverses the entire call stack and  

returns the address of the account that originally sent the call (or transaction). Using  

this variable for authentication in smart contracts makes contracts vulnerable to  

phishing-like attacks.z


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Owner permission control【Pass】
Check that theowner in the contract code implementation has excessive  

permissions. For example, modify other account balances at will, and so on.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Gas consumption detection【Pass】

Check that the consumption of gas exceeds the maximum block limit.

Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.

24



Let humanity enter the safe blockchain world.

call injection attack【Pass】
When a call function is called, strict permission control should be exercised, or the  

function called by call calls should be written directly to call calls.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Low-level function safety【Pass】
Check the contract code implementation for security vulnerabilities in the use of  

call/delegatecall


The execution context of the call function is in the contract being called, while the  

execution context of the delegatecall function is in the contract in which the function is  

currently called.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Vulnerability of additional token issuance【Pass】
Check to see if there are functions in the token contract that might increase the  

total token volume after the token total is initialized.


Detection results: The security issue is not present in the smart contract code after  

detection.

25



Let humanity enter the safe blockchain world.

Security advice: None.


Access control defect detection【Pass】
Different functions in the contract should set reasonable permissions, check  

whether the functions in the contract correctly use pubic, private and other keywords  

for visibility modification, check whether the contract is properly defined and use  

modifier access restrictions on key functions, to avoid problems caused by overstepping  

the authority.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Numerical overflow detection【Pass】
The arithmetic problem in smart contracts is the integer overflow and integer  

overflow, with Solidity able to handle up to 256 digits (2^256-1), and a maximum  

number increase of 1 will overflow to get 0. Similarly, when the number is an unsigned  

type, 0 minus 1 overflows to get the maximum numeric value.


Integer overflows and underflows are not a new type of vulnerability, but they are

particularly dangerous in smart contracts. Overflow conditions can lead to incorrect  

results, especially if the likelihood is not anticipated, which can affect the reliability  

and safety of the program.


Detection results: The security issue is not present in the smart contract code after

26



Let humanity enter the safe blockchain world.

detection.


Security advice: None.


Arithmetic accuracy error【Pass】
Solidity has a data structure design similar to that of a normal programming  

language, such as variables, constants, arrays, functions, structures, and so on, and there  

is a big difference between Solidity and a normal programming language - Solidity does  

not have floating-point patterns, and all of Solidity's numerical operations result in  

integers, without the occurrence of decimals, and without allowing the definition of  

decimal type data. Numerical operations in contracts are essential, and numerical  

operations are designed to cause relative errors, such as sibling operations: 5/2 x 10 x  

20, and 5 x 10/2 x 25, resulting in errors, which can be greater and more obvious when  

the data is larger.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Incorrect use of random numbers【Pass】
Random numbers may be required in smart contracts, and while the functions and  

variables provided by Solidity can access significantly unpredictable values, such as  

block.number and block.timestamp, they are usually either more public than they seem,  

or are influenced by miners, i.e. these random numbers are somewhat predictable, so

27



Let humanity enter the safe blockchain world.


malicious users can often copy it and rely on its unpredictability to attack the feature.

Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Unsafe interface usage【Pass】
Check the contract code implementation for unsafe external interfaces, which can  

be controlled, which can cause the execution environment to be switched and control  

contract execution arbitrary code.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Variable coverage【Pass】
Check the contract code implementation for security issues caused by variable  

overrides.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Uninitialized storage pointer【Pass】

A special data structure is allowed in solidity as a strut structure, while local

28



Let humanity enter the safe blockchain world.


variables within the function are stored by default using stage or memory.

The existence of store (memory) and memory (memory) is two different concepts,  

solidity allows pointers to point to an uninitialized reference, while uninitialized local


stage causes variables to point to other stored variables, resulting in variable overrides,  

and even more serious consequences, and should avoid initializing the task variable in  

the function during development.


Detection results: After detection, the smart contract code does not have the  

problem.


Security advice: None.


Return value call verification【Pass】
This issue occurs mostly in smart contracts related to currency transfers, so it is  

also known as silent failed sending or unchecked sending.


In Solidity, there are transfer methods such as transfer(), send(), call.value(), which  

can be used to send tokens to an address, the difference being: transfer send failure will  

be throw, and state rollback; Call.value returns false when it fails to send, and passing  

all available gas calls (which can be restricted by incoming gas_value parameters) does  

not effectively prevent reentration attacks.


If the return values of the send and call.value transfer functions above are not

checked in the code, the contract continues to execute the subsequent code, possibly  

with unexpected results due to token delivery failures.


Detection results: The security issue is not present in the smart contract code after

29



Let humanity enter the safe blockchain world.

detection.


Security advice: None.


Transaction order dependency【Pass】
Because miners always get gas fees through code that represents an externally  

owned address (EOA), users can specify higher fees to trade faster. Since blockchain is  

public, everyone can see the contents of other people's pending transactions. This means  

that if a user submits a valuable solution, a malicious user can steal the solution and  

copy its transactions at a higher cost to preempt the original solution.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Timestamp dependency attack【Pass】
Block timestamps typically use miners' local time, which can fluctuate over a  

range of about 900 seconds, and when other nodes accept a new chunk, they only need  

to verify that the timestamp is later than the previous chunk and has a local time error  

of less than 900 seconds. A miner can profit from setting the timestamp of a block to  

meet as much of his condition as possible.


Check the contract code implementation for key timestamp-dependent features.

Detection results: The security issue is not present in the smart contract code after  

detection.

30



Let humanity enter the safe blockchain world.

Security advice: None.


Denial of service attack【Pass】
Smart contracts that are subject to this type of attack may never return to normal  

operation. There can be many reasons for smart contract denial of service, including  

malicious behavior as a transaction receiver, the exhaustion of gas caused by the  

artificial addition of the gas required for computing functionality, the misuse of access  

control to access the private component of smart contracts, the exploitation of confusion  

and negligence, and so on.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Fake recharge vulnerability【Pass】
The transfer function of the token contract checks the balance of the transfer  

initiator (msg.sender) in the if way, when the balances < value enters the else logic part  

and return false, and ultimately does not throw an exception, we think that only if/else  

is a gentle way of judging in a sensitive function scenario such as transfer is a less  

rigorous way of coding.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.

31



Let humanity enter the safe blockchain world.

Reentry attack detection【Pass】
The call.value() function in Solidity consumes all the gas it receives when it is  

used to send tokens, and there is a risk of re-entry attacks when the call to the call tokens  

occurs before the balance of the sender's account is actually reduced.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Replay attack detection【Pass】
If the requirements of delegate management are involved in the contract, attention  

should be paid to the non-reusability of validation to avoid replay attacks


In the asset management system, there are often cases of entrustment management,  

the principal will be the assets to the trustee management, the principal to pay a certain  

fee to the trustee. This business scenario is also common in smart contracts.


Detection results: The security issue is not present in the smart contract code after  

detection.


Security advice: None.


Rearrangement attack detection【Pass】
A reflow attack is an attempt by a miner or other party to "compete" with a smart  

contract participant by inserting their information into a list or mapping, giving an  

attacker the opportunity to store their information in a contract.

32



Let humanity enter the safe blockchain world.


Detection results: After detection, there are no related vulnerabilities in the smart  

contract code.


Security advice: None.

33



Let humanity enter the safe blockchain world.

7. Appendix A: Security Assessment of Contract Fund

 	 Management	

34

Contract fund management

The type of asset in


the contract The function is involved Security risks

SAFE

Check the security of the management of digital currency assets transferred by


users in the business logic of the contract. Observe whether there are security risks that

may cause the loss of customer funds, such as incorrect recording, incorrect transfer,  

and backdoor withdrawal of the digital currency assets transferred into the contract.



Let humanity enter the safe blockchain world.

35


