
OpenOceanExchange
Security Assessment

March 9, 2021

For :

OpenOceanExchange

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular
project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their code
while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce
the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies, and
in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK by a
Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase the
quality of the company/product’s IT infrastructure and or source code.

Project Name OpenOceanExchange

Description Defi

Platform Ethereum; Bsc; Tron; Solidity;

Codebase GitHub Repository

Commits 9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a

Delivery Date Mar. 9, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Mar.1 - Mar.6, Mar.9, 2021

Total Issues 4

 Total Critical 0

 Total Major 0

 Total Minor 0

 Total Informational 4

Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/openoceanfinance/OpenOceanExchange
https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol

Executive Summary

This report has been prepared for OpenOceanExchange smart contract to discover issues and vulnerabilities in the
source code of their Smart Contract as well as any contract dependencies that were not part of an officially recognized
library. A comprehensive examination has been performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review
techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts produced by industry
leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

ID Contract SHA-256 Checksum

OOE OpenOceanExchange.full.sol 48b6722271eb1752649f43b71eeec3a9a1aad24a594d5c208f69f134de96daef

File in Scope

Documentation

The sources of truth regarding the operation of the contracts in scope were lackluster and are something we advise to be
enriched to aid in the legibility of the codebase as well as project. To help aid our understanding of each contract’s
functionality we referred to in-line comments and naming conventions.

These were considered the specification, and when discrepancies arose with the actual code behaviour, we consulted with
the OpenOceanExchange team or reported an issue.

 Review Notes

Certain optimization steps that we pinpointed in the source code mostly referred to coding standards and inefficiencies.

Certain discrepancies between the expected specification and the implementation of it were identified and were relayed to
the team, however they pose no type of vulnerability and concern an optional code path that was unaccounted for.

The project has adequate documentation and specification outside of the source files, and the code comment coverage is
good.

 Recommendations

Overall, the codebase of the contracts should be refactored to assimilate the findings of this report, enforce linters and / or
coding styles as well as correct any spelling errors and mistakes that appear throughout the code to achieve a high
standard of code quality and security.

100%

Finding Summary

Informational

ID Title Type Severity Resolved

OOE-01 Unlocked Compiler Versions Language Specific Informational

OOE-02 Proper Usage of "public" and "external" Type Gas Optimization Informational

OOE-03 Local Variable Shadowing Coding Style Informational

OOE-04 Discussion For External Call Optimization Informational

Findings

Type Severity Location

Language Specific Informational OpenOceanExchange.full.sol L6,L248

 OOE-01: Unlocked Compiler Versions

Description:

An unlocked compiler version in the source code of the contract permits the user to compile it at or above a particular
version. This, in turn, leads to differences in the generated bytecode between compilations due to differing compiler
version numbers.
This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to
identify over a span of multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler versions of entire codebase locked at the lowest version possible that the full project can be
compiled at.

Alleviation:

No alleviation.

https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol#L6
https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol#L248

Type Severity Location

Gas Optimization Informational OpenOceanExchange.full.sol L816

 OOE-02: Proper Usage of "public" and "external" Type

Description:

"public" functions that are never called by the contract could be declared "external" .

Examples:

Functions like : OpenOceanExchange.swap()

Recommendation:

Consider using the "external" attribute for functions never called from the contract. For example:

Alleviation:

No alleviation.

 function swap(
 ...
) external payable notShutdown returns (uint256 outAmount) {
 ...
 }

https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol#L816

Type Severity Location

Coding Style Informational OpenOceanExchange.full.sol L511,OpenOceanExchange.full.sol L796-L799

 OOE-03: Local Variable Shadowing

Description:

Constructor of contract OpenOceanExchange has a variable _owner :

Contract Ownable also has a variable _owner :

It's better to take different variable names to avoid confusion.

Recommendation:

Change the name of _owner in constructor of contract OpenOceanExchange.

Alleviation:

No alleviation.

 constructor(address _owner) public {
 spender = new TokenSpender();
 transferOwnership(_owner);
 }

 address private _owner;

https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol#L511
https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol#L796-L799

Type Severity Location

Optimization Informational OpenOceanExchange.full.sol L828-L834

 OOE-04: Discussion For External Call

Description:

There is an external call in Function swap .There is a potential security risk if malicious code is called.

Please check if this external call is safe.

Alleviation:

OpenOceanExchange Response : The external call function is provided by the OpenOceanExchange team, so it's safe.

 addressesToCall[i].externalCall(
 gasLimitsAndValues[i] & ((1 << 128) - 1),
 dataToCall,
 offsets[i],
 offsets[i + 1] - offsets[i],
 gasLimitsAndValues[i] >> 128
)

https://github.com/openoceanfinance/OpenOceanExchange/blob/9838ba65d67e1dc4b1f9a658b96cc3ec7f612a8a/OpenOceanExchange.full.sol#L828-L834

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more
optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect
operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-able
by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more
legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

Icons explanation

 : Issue resolved

 : Issue not resolved / Acknowledged. The team will be fixing the issues in the own timeframe.

 : Issue partially resolved. Not all instances of an issue was resolved.

	 Disclaimer
	What is a CertiK report?

	Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	Executive Summary
	File in Scope
	Documentation
	 Review Notes
	 Recommendations
	Findings
	 OOE-01: Unlocked Compiler Versions
	Description:
	Recommendation:

	 OOE-02: Proper Usage of "public" and "external" Type
	Description:
	Recommendation:

	 OOE-03: Local Variable Shadowing
	Description:
	Recommendation:

	 OOE-04: Discussion For External Call
	Description:

	Appendix
	Finding Categories
	Icons explanation

