
Let humanity enter the safe blockchain world.

- 1 -

 Let humanity enter the safe blockchain world.

- 2 -

Version description!

The revision! Date! Revised! Version

Write

documentation
20221219 KNOWNSEC Blockchain Lab V1.0

!

Document information!

Title! Version ! Document Number! Type!

OpenOcean Cross_Chain

 Smart Contract Audit

Report

V1.0
9bde5778e1c948bbb4eef805da4

6deff

Open to

project team

!

Statement
KNOWNSEC Blockchain Lab only issues this report for facts that have occurred

or existed before the issuance of this report, and assumes corresponding responsibilities

for this. KNOWNSEC Blockchain Lab is unable to determine the security status of its

smart contracts and is not responsible for the facts that will occur or exist in the future.

The security audit analysis and other content made in this report are only based on the

documents and information provided to us by the information provider as of the time

this report is issued. KNOWNSEC Blockchain Lab 's assumption: There is no missing,

tampered, deleted or concealed information. If the information provided is missing,

tampered with, deleted, concealed or reflected in the actual situation, KNOWNSEC

Blockchain Lab shall not be liable for any losses and adverse effects caused thereby.

 Let humanity enter the safe blockchain world.

- 3 -

Directory!

1. Summarize .. - 6 -

2. Item information .. - 7 -

 Item description .. - 7 -

 The project's website .. - 7 -

 White Paper .. - 7 -

 Review version code .. - 7 -

 Contract file and Hash/contract deployment address - 7 -

3. External visibility analysis ... - 9 -

 Registry contract ... - 9 -

4. Code vulnerability analysis ... - 10 -

 Summary description of the audit results ... - 10 -

5. Business security detection .. - 12 -

 Outbound transfer function【Pass】 ... - 12 -

 New routing function【Pass】 .. - 15 -

 Rescue money function【Pass】 ... - 16 -

 High authority issue【Pass】 .. - 17 -

6. Code basic vulnerability detection .. - 19 -

 Compiler version security【Pass】 ... - 19 -

 Redundant code【Pass】 ... - 19 -

 Use of safe arithmetic library【Pass】 .. - 19 -

 Not recommended encoding【Pass】 .. - 20 -

 Let humanity enter the safe blockchain world.

- 4 -

 Reasonable use of require/assert【Pass】 ... - 20 -

 Fallback function safety【Pass】 .. - 20 -

 tx.origin authentication【Pass】 .. - 21 -

 Owner permission control【Pass】 ... - 21 -

 Gas consumption detection【Pass】 ... - 21 -

 call injection attack【Pass】 .. - 22 -

 Low-level function safety【Pass】 .. - 22 -

 Vulnerability of additional token issuance【Pass】 - 22 -

 Access control defect detection【Pass】 ... - 23 -

 Numerical overflow detection【Pass】 ... - 23 -

 Arithmetic accuracy error【Pass】 .. - 24 -

 Incorrect use of random numbers【Pass】 .. - 24 -

 Unsafe interface usage【Pass】 ... - 25 -

 Variable coverage【Pass】 ... - 25 -

 Uninitialized storage pointer【Pass】 .. - 25 -

 Return value call verification【Pass】 ... - 26 -

 Transaction order dependency【Pass】 ... - 27 -

 Timestamp dependency attack【Pass】 ... - 27 -

 Denial of service attack【Pass】 .. - 28 -

 Fake recharge vulnerability【Pass】 ... - 28 -

 Reentry attack detection【Pass】 ... - 29 -

 Replay attack detection【Pass】 .. - 29 -

 Let humanity enter the safe blockchain world.

- 5 -

 Rearrangement attack detection【Pass】 ... - 29 -

7. Appendix A: Security Assessment of Contract Fund Management - 31 -

 Let humanity enter the safe blockchain world.

- 6 -

1. Summarize
The effective test period of this report is from December 09, 2022 to December

19, 2022. During this period, the security and standardization of OpenOcean

Cross_Chain smart contract will be audited and used as the statistical basis for the

report.

The scope of this smart contract security audit does not include external contract

calls, new attack methods that may appear in the future, and code after contract

upgrades or tampering. (With the development of the project, the smart contract may

add a new pool , New functional modules, new external contract calls, etc.), does not

include front-end security and server security.

In this audit report, engineers conducted a comprehensive analysis of the common

vulnerabilities of smart contracts (Chapter 6). The smart contract code of the

OpenOcean Cross_Chain is comprehensively assessed as PASS.

Since the testing is under non-production environment, all codes are the latest

version. In addition, the testing process is communicated with the relevant engineer,

and testing operations are carried out under the controllable operational risk to avoid

production during the testing process, such as: Operational risk, code security risk.

KNOWNSEC Attest information:

classification! information!

report number! !"#$%&&'$()!*'"""*$$+',%#-*.#$++/

report query link
https://attest.knownseclab.com/attestation/searchResult?qur

ey=9bde5778e1c948bbb4eef805da46deff

 Let humanity enter the safe blockchain world.

- 7 -

2. Item information

 Item description

None.

 The project's website

https://openocean.finance/

 White Paper

https://docs.openocean.finance/

 Review version code

https://bscscan.com/address/0x43c47b76d24ad1f73f5ab12442a016397a5ae9f6#c

ode/

 Contract file and Hash/contract deployment address

The contract

documents!
MD5!

"##$%&&'&()! ++!,0*+)(,1$!.$""((!*#1(+)0',)0(/

*(+,%-,'&()! &,!0",0!#&!&%,(.1.(,)%()#&%#+)$'/

%$$($&'&()!)#,,(-(%,)%*$&*.'01!-"&+,*,+%!+*/

./0*12'&()! $.)1+++0+0).)"-*-0"*+,.-0+.+$),,/

.34)56&%'&()! %+$#-'"%"++-,-,0.+.#(-&."$-+.#!0/

78##)%96$%.34)56&%'&(

)!
.#+""."".*&$+!#*1!$&0+.$*!--$.%(/

:9+6;)%'&()! '.#,,#%!1#00*.!11!$#%$%)'..'-*"+/

 Let humanity enter the safe blockchain world.

- 8 -

0%<8&,$='&()! ,("%"""$&.*$!)$#&')+0-$1"*1!-1-0/

>6?%/0*12'&()! %1%*.-,%*,%'0!0*!&-&)-!!!1$#0!!(/

 Let humanity enter the safe blockchain world.

- 9 -

3. External visibility analysis

 Registry contract

Registry

funcName/ visibility/
state

changes/
decorator/

payable

reception/
instructions/

outboundTransfe

rTo
external True --- payable

addRoutes external True onlyOwner ---

disableRoute external True

onlyOwner

onlyExistingRo

ute(_routeId)

rescueFunds external True onlyOwner ---

 Let humanity enter the safe blockchain world.

- 10 -

4. Code vulnerability analysis

 Summary description of the audit results

Audit results
audit

project
audit content condition description

Business

security

detection

Outbound transfer

function
Pass After testing, there is no security issue.

New routing function Pass After testing, there is no security issue.

Rescue money function Pass After testing, there is no security issue.

High authority issue Pass After testing, there is no security issue.

Code

basic

vulnerabi

lity

detection

Compiler version

security
Pass After testing, there is no security issue.

Redundant code Pass After testing, there is no security issue.

Use of safe arithmetic

library
Pass After testing, there is no security issue.

Not recommended

encoding
Pass After testing, there is no security issue.

Reasonable use of

require/assert
Pass After testing, there is no security issue.

fallback function safety Pass After testing, there is no security issue.

tx.origin authentication Pass After testing, there is no security issue.

Owner permission

control
Pass After testing, there is no security issue.

Gas consumption

detection
Pass After testing, there is no security issue.

call injection attack Pass After testing, there is no security issue.

Low-level function

safety
Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 11 -

Vulnerability of

additional token

issuance

Pass After testing, there is no security issue.

Access control defect

detection
Pass After testing, there is no security issue.

Numerical overflow

detection
Pass After testing, there is no security issue.

Arithmetic accuracy

error
Pass After testing, there is no security issue.

Wrong use of random

number detection
Pass After testing, there is no security issue.

Unsafe interface use Pass After testing, there is no security issue.

Variable coverage Pass After testing, there is no security issue.

Uninitialized storage

pointer
Pass After testing, there is no security issue.

Return value call

verification
Pass After testing, there is no security issue.

Transaction order

dependency detection
Pass After testing, there is no security issue.

Timestamp dependent

attack
Pass After testing, there is no security issue.

Denial of service attack

detection
Pass After testing, there is no security issue.

Fake recharge

vulnerability detection
Pass After testing, there is no security issue.

Reentry attack detection Pass After testing, there is no security issue.

Replay attack detection Pass After testing, there is no security issue.

Rearrangement attack

detection
Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 12 -

5. Business security detection

 Outbound transfer function!Pass"

Audit analysis: Conduct a security audit on the logic of the outbound transfer

function in the contract Registry.sol, which is used to determine the content related to

the outbound transfer of tokens across the chain bridge. Check the validity of the

incoming parameters and whether there are logical errors in the outbound process.

function outboundTransferTo(UserRequest calldata _userRequest)

 external

 payable

 {

 require(_userRequest.amount != 0, MovrErrors.INVALID_AMT);

 // make sure bridge ID is not 0

 require(//knownsec// Cross-link bridge id is not 0

 _userRequest.bridgeRequest.id != 0,

 MovrErrors.INVALID_BRIDGE_ID

);

 // make sure bridge input is provided

 require(//knownsec// Cross-link bridge input is not 0

 _userRequest.bridgeRequest.inputToken != address(0),

 MovrErrors.ADDRESS_0_PROVIDED

);

 // load middleware info and validate

 RouteData memory middlewareInfo = routes[

 _userRequest.middlewareRequest.id

];

 require(

 Let humanity enter the safe blockchain world.

- 13 -

 middlewareInfo.route != address(0) &&

 middlewareInfo.isEnabled &&

 middlewareInfo.isMiddleware,

 MovrErrors.ROUTE_NOT_ALLOWED

);

 // load bridge info and validate

 RouteData memory bridgeInfo = routes[_userRequest.bridgeRequest.id];

 require(

 bridgeInfo.route != address(0) &&

 bridgeInfo.isEnabled &&

 !bridgeInfo.isMiddleware,

 MovrErrors.ROUTE_NOT_ALLOWED

);

 emit ExecutionCompleted(

 _userRequest.middlewareRequest.id,

 _userRequest.bridgeRequest.id,

 _userRequest.amount

);

 // if middlewareID is 0 it means we dont want to perform a action before bridging

 // and directly want to move for bridging

 if (_userRequest.middlewareRequest.id == 0) { //knownsec// Determine if the user needs

middleware

 // perform the bridging

 ImplBase(bridgeInfo.route).outboundTransferTo{value: msg.value}(

 _userRequest.amount,

 msg.sender,

 _userRequest.receiverAddress,

 _userRequest.bridgeRequest.inputToken,

 _userRequest.toChainId,

 _userRequest.bridgeRequest.data

 Let humanity enter the safe blockchain world.

- 14 -

);

 return;

 }

 // we first perform an action using the middleware

 // we determine if the input asset is a native asset, if yes we pass

 // the amount as value, else we pass the optionalNativeAmount

 uint256 _amountOut = MiddlewareImplBase(middlewareInfo.route)

 .performAction{

 value: _userRequest.middlewareRequest.inputToken ==

 NATIVE_TOKEN_ADDRESS

 ? _userRequest.amount +

 _userRequest.middlewareRequest.optionalNativeAmount

 : _userRequest.middlewareRequest.optionalNativeAmount

 }(

 msg.sender,

 _userRequest.middlewareRequest.inputToken,

 _userRequest.amount,

 address(this),

 _userRequest.middlewareRequest.data

);

 // we mutate this variable if the input asset to bridge Impl is NATIVE

 uint256 nativeInput = _userRequest.bridgeRequest.optionalNativeAmount;

 // if the input asset is ERC20, we need to grant the bridge implementation approval

 if (_userRequest.bridgeRequest.inputToken != NATIVE_TOKEN_ADDRESS) {

 IERC20(_userRequest.bridgeRequest.inputToken).safeIncreaseAllowance(

 bridgeInfo.route,

 _amountOut

);

 } else {

 // if the input asset is native we need to set it as value

 Let humanity enter the safe blockchain world.

- 15 -

 nativeInput =

 _amountOut +

 _userRequest.bridgeRequest.optionalNativeAmount;

 }

 // send off to bridge

 ImplBase(bridgeInfo.route).outboundTransferTo{value: nativeInput}(

 _amountOut,

 address(this),

 _userRequest.receiverAddress,

 _userRequest.bridgeRequest.inputToken,

 _userRequest.toChainId,

 _userRequest.bridgeRequest.data

);

 }

Security advice: None.

 New routing function!Pass"

Audit analysis: Security audit of the logic of the new routing function in the

contract Registry.sol, which is used to add routes for the contract owner. Checking the

validity of incoming parameters, adding process for logical errors, permission

verification issues.

function addRoutes(RouteData[] calldata _routes)

 external

 onlyOwner

 returns (uint256[] memory)

 { //knownsec// Only the Owner can add Routers

 require(_routes.length != 0, MovrErrors.EMPTY_INPUT);

 Let humanity enter the safe blockchain world.

- 16 -

 uint256[] memory _routeIds = new uint256[](_routes.length);

 for (uint256 i = 0; i < _routes.length; i++) {

 require(

 _routes[i].route != address(0),

 MovrErrors.ADDRESS_0_PROVIDED

);

 routes.push(_routes[i]);

 _routeIds[i] = routes.length - 1;

 emit NewRouteAdded(

 i,

 _routes[i].route,

 _routes[i].isEnabled,

 _routes[i].isMiddleware

);

 }

 return _routeIds;

 }

Security advice: None.

 Rescue money function!Pass"

Audit analysis: Conduct a security audit on the logic of the rescue fund function

in the contract Registry.sol, which is used to refund the tokens transferred in by mistake.

Check the validity of incoming parameters, add process for logical errors, permission

verification issues.

function rescueFunds(

 address _token,

 address _receiverAddress,

 uint256 _amount

 Let humanity enter the safe blockchain world.

- 17 -

) external onlyOwner { //knownsec// Rescue money

 IERC20(_token).safeTransfer(_receiverAddress, _amount);

 }

Security advice: None.

 High authority issue!Pass"

Audit analysis: Security audit of each function logic in the contract Registry.sol,

found that rescueFunds, disableRoute, addRoutes all exist only owner permissions

operability, there is a high risk of permissions, the official added multi-signature so the

risk is lifted.

function addRoutes(RouteData[] calldata _routes)

 external

 onlyOwner

 returns (uint256[] memory)

 { //knownsec// Only the Owner can add Routers

 require(_routes.length != 0, MovrErrors.EMPTY_INPUT);

 uint256[] memory _routeIds = new uint256[](_routes.length);

 for (uint256 i = 0; i < _routes.length; i++) {

 require(

 _routes[i].route != address(0),

 MovrErrors.ADDRESS_0_PROVIDED

);

 routes.push(_routes[i]);

 _routeIds[i] = routes.length - 1;

 emit NewRouteAdded(

 i,

 _routes[i].route,

 _routes[i].isEnabled,

 Let humanity enter the safe blockchain world.

- 18 -

 _routes[i].isMiddleware

);

 }

 return _routeIds;

 }

 ///@notice disables the route if required.

 function disableRoute(uint256 _routeId)

 external

 onlyOwner

 onlyExistingRoute(_routeId)

 { //knownsec// Close an existing Router

 routes[_routeId].isEnabled = false;

 emit RouteDisabled(_routeId);

 }

 function rescueFunds(

 address _token,

 address _receiverAddress,

 uint256 _amount

) external onlyOwner { //knownsec// Rescue money

 IERC20(_token).safeTransfer(_receiverAddress, _amount);

 }

Security advice: None.

 Let humanity enter the safe blockchain world.

- 19 -

6. Code basic vulnerability detection

 Compiler version security!Pass"

Check to see if a secure compiler version is used in the contract code

implementation.

Detection results: After testing, the compiler version is greater than or equal to

0.8.3 in the smart contract code, and there is no such security problem.

Security advice: None.

 Redundant code!Pass"

Check that the contract code implementation contains redundant code.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: Selective removal of redundant code.

 Use of safe arithmetic library!Pass"

Check to see if the SafeMath security abacus library is used in the contract code

implementation.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 20 -

 Not recommended encoding!Pass"

Check the contract code implementation for officially uns recommended or

deprecated coding methods.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Reasonable use of require/assert!Pass"

Check the reasonableness of the use of require and assert statements in contract

code implementations.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Fallback function safety!Pass"

Check that the fallback function is used correctly in the contract code

implementation.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 21 -

 tx.origin authentication!Pass"

tx.origin is a global variable of Solidity that traverses the entire call stack and

returns the address of the account that originally sent the call (or transaction). Using

this variable for authentication in smart contracts makes contracts vulnerable to

phishing-like attacks.z

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Owner permission control!Pass"

Check that theowner in the contract code implementation has excessive

permissions. For example, modify other account balances at will, and so on.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Gas consumption detection!Pass"

Check that the consumption of gas exceeds the maximum block limit.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 22 -

 call injection attack!Pass"

When a call function is called, strict permission control should be exercised, or the

function called by call calls should be written directly to call calls.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Low-level function safety!Pass"

Check the contract code implementation for security vulnerabilities in the use of

call/delegatecall

The execution context of the call function is in the contract being called, while the

execution context of the delegatecall function is in the contract in which the function is

currently called.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Vulnerability of additional token issuance!Pass"

Check to see if there are functions in the token contract that might increase the

total token volume after the token total is initialized.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 23 -

Security advice: None.

 Access control defect detection!Pass"

Different functions in the contract should set reasonable permissions, check

whether the functions in the contract correctly use pubic, private and other keywords

for visibility modification, check whether the contract is properly defined and use

modifier access restrictions on key functions, to avoid problems caused by overstepping

the authority.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Numerical overflow detection!Pass"

The arithmetic problem in smart contracts is the integer overflow and integer

overflow, with Solidity able to handle up to 256 digits (2^256-1), and a maximum

number increase of 1 will overflow to get 0. Similarly, when the number is an unsigned

type, 0 minus 1 overflows to get the maximum numeric value.

Integer overflows and underflows are not a new type of vulnerability, but they are

particularly dangerous in smart contracts. Overflow conditions can lead to incorrect

results, especially if the likelihood is not anticipated, which can affect the reliability

and safety of the program.

Detection results: The security issue is not present in the smart contract code after

 Let humanity enter the safe blockchain world.

- 24 -

detection.

Security advice: None.

 Arithmetic accuracy error!Pass"

Solidity has a data structure design similar to that of a normal programming

language, such as variables, constants, arrays, functions, structures, and so on, and there

is a big difference between Solidity and a normal programming language - Solidity does

not have floating-point patterns, and all of Solidity's numerical operations result in

integers, without the occurrence of decimals, and without allowing the definition of

decimal type data. Numerical operations in contracts are essential, and numerical

operations are designed to cause relative errors, such as sibling operations: 5/2 x 10 x

20, and 5 x 10/2 x 25, resulting in errors, which can be greater and more obvious when

the data is larger.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Incorrect use of random numbers!Pass"

Random numbers may be required in smart contracts, and while the functions and

variables provided by Solidity can access significantly unpredictable values, such as

block.number and block.timestamp, they are usually either more public than they seem,

or are influenced by miners, i.e. these random numbers are somewhat predictable, so

 Let humanity enter the safe blockchain world.

- 25 -

malicious users can often copy it and rely on its unpredictability to attack the feature.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Unsafe interface usage!Pass"

Check the contract code implementation for unsafe external interfaces, which can

be controlled, which can cause the execution environment to be switched and control

contract execution arbitrary code.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Variable coverage!Pass"

Check the contract code implementation for security issues caused by variable

overrides.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Uninitialized storage pointer!Pass"

A special data structure is allowed in solidity as a strut structure, while local

 Let humanity enter the safe blockchain world.

- 26 -

variables within the function are stored by default using stage or memory.

The existence of store (memory) and memory (memory) is two different concepts,

solidity allows pointers to point to an uninitialized reference, while uninitialized local

stage causes variables to point to other stored variables, resulting in variable overrides,

and even more serious consequences, and should avoid initializing the task variable in

the function during development.

Detection results: After detection, the smart contract code does not have the

problem.

Security advice: None.

 Return value call verification!Pass"

This issue occurs mostly in smart contracts related to currency transfers, so it is

also known as silent failed sending or unchecked sending.

In Solidity, there are transfer methods such as transfer(), send(), call.value(), which

can be used to send tokens to an address, the difference being: transfer send failure will

be throw, and state rollback; Call.value returns false when it fails to send, and passing

all available gas calls (which can be restricted by incoming gas_value parameters) does

not effectively prevent reentration attacks.

If the return values of the send and call.value transfer functions above are not

checked in the code, the contract continues to execute the subsequent code, possibly

with unexpected results due to token delivery failures.

Detection results: The security issue is not present in the smart contract code after

 Let humanity enter the safe blockchain world.

- 27 -

detection.

Security advice: None.

 Transaction order dependency!Pass"

Because miners always get gas fees through code that represents an externally

owned address (EOA), users can specify higher fees to trade faster. Since blockchain is

public, everyone can see the contents of other people's pending transactions. This means

that if a user submits a valuable solution, a malicious user can steal the solution and

copy its transactions at a higher cost to preempt the original solution.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Timestamp dependency attack!Pass"

Block timestamps typically use miners' local time, which can fluctuate over a

range of about 900 seconds, and when other nodes accept a new chunk, they only need

to verify that the timestamp is later than the previous chunk and has a local time error

of less than 900 seconds. A miner can profit from setting the timestamp of a block to

meet as much of his condition as possible.

Check the contract code implementation for key timestamp-dependent features.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 28 -

Security advice: None.

 Denial of service attack!Pass"

Smart contracts that are subject to this type of attack may never return to normal

operation. There can be many reasons for smart contract denial of service, including

malicious behavior as a transaction receiver, the exhaustion of gas caused by the

artificial addition of the gas required for computing functionality, the misuse of access

control to access the private component of smart contracts, the exploitation of confusion

and negligence, and so on.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Fake recharge vulnerability!Pass"

The transfer function of the token contract checks the balance of the transfer

initiator (msg.sender) in the if way, when the balances < value enters the else logic part

and return false, and ultimately does not throw an exception, we think that only if/else

is a gentle way of judging in a sensitive function scenario such as transfer is a less

rigorous way of coding.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 29 -

 Reentry attack detection!Pass"

The call.value() function in Solidity consumes all the gas it receives when it is

used to send tokens, and there is a risk of re-entry attacks when the call to the call tokens

occurs before the balance of the sender's account is actually reduced.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Replay attack detection!Pass"

If the requirements of delegate management are involved in the contract, attention

should be paid to the non-reusability of validation to avoid replay attacks

In the asset management system, there are often cases of entrustment management,

the principal will be the assets to the trustee management, the principal to pay a certain

fee to the trustee. This business scenario is also common in smart contracts.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Rearrangement attack detection!Pass"

A reflow attack is an attempt by a miner or other party to "compete" with a smart

contract participant by inserting their information into a list or mapping, giving an

attacker the opportunity to store their information in a contract.

 Let humanity enter the safe blockchain world.

- 30 -

Detection results: After detection, there are no related vulnerabilities in the smart

contract code.

Security advice: None.

Let humanity enter the safe blockchain world.

- 31 -

7. Appendix A: Security Assessment of Contract Fund
Management

Contract fund management
The type of asset in

the contract/
The function is involved/ Security risks/

User pledged token

assets
buyMTT、sellMTT PASS

Check the security of the management of digital currency assets transferred by

users in the business logic of the contract. Observe whether there are security risks that

may cause the loss of customer funds, such as incorrect recording, incorrect transfer,

and backdoor withdrawal of the digital currency assets transferred into the contract.

Let humanity enter the safe blockchain world.

35

